Benjamin Walter Assignment Fast_Fourier due 02/02/2022 at 02:13pm EET

Problem 1. (1 point) METUNCC/Applied_Math/fourier/Fast_Fourier.pg

In this problem you will apply the fast Fourier transform to $\vec{\mathbf{f}} = (3, 3, -2, 3, 1, -1, -2, 1)$

(You must write your answers without complex multiplication, trig functions, or powers.)

(A) Split \vec{f} into its even and odd components:

 $\vec{\mathbf{f}}_{even} = \left(\underbrace{\dots, \dots, \dots, \dots}_{s}, \underbrace{\dots}_{s} \right)$ $\vec{\mathbf{f}}_{odd} = \left(\underbrace{\dots, \dots, \dots, \dots}_{s}, \underbrace{\dots}_{s} \right)$

(B) Compute the Fourier transforms of the even and odd components:

 $\begin{aligned} \mathcal{F}\left\{\vec{\mathbf{f}}_{even}\right\} &= \left(\underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}\right) \\ \mathcal{F}\left\{\vec{\mathbf{f}}_{odd}\right\} &= \left(\underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}\right) \end{aligned}$

(C) Combine the Fourier transforms of the even and odd components to get the transform of \vec{f}

Problem 2. (1 point) METUNCC/Applied_Math/fourier/Fast_Fourier_inv.pg In this problem you will apply the inverse fast Fourier transform to

 $\vec{\mathbf{c}} = (2, -1-2i, 1, -3-2i, 0, -3+2i, 1, -1+2i)$

(A) Split \vec{c} into its even and odd components:

 $\vec{c}_{even} = \left(\underbrace{--, --, --, --}_{odd} \right)$ $\vec{c}_{odd} = \left(\underbrace{--, --, --, --}_{odd} \right)$

(B) Compute the inverse Fourier transforms of the even and odd components:

 $\mathcal{F}^{-1}\left\{\vec{\mathbf{c}}_{even}\right\} = \left(\underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}\right)$ $\mathcal{F}^{-1}\left\{\vec{\mathbf{c}}_{odd}\right\} = \left(\underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}, \underbrace{\qquad}\right)$

(C) Combine the inverse Fourier transforms of the even and odd components to get the transform of \vec{c}

$$\mathcal{F}_{0}^{-1}\left\{\vec{\mathbf{c}}\right\} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$$

$$\mathcal{F}_{1}^{-1}\left\{\vec{\mathbf{c}}\right\} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$$

$$\mathcal{F}_{2}^{-1}\left\{\vec{\mathbf{c}}\right\} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$$

$$\mathcal{F}_{3}^{-1}\left\{\vec{\mathbf{c}}\right\} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$$

$$\mathcal{F}_{4}^{-1}\left\{\vec{\mathbf{c}}\right\} = \underline{\qquad} - \underline{\qquad} = \underline{\qquad}$$

$$\mathcal{F}_{5}^{-1}\left\{\vec{\mathbf{c}}\right\} = \underline{\qquad} - \underline{\qquad} = \underline{\qquad}$$

$$\mathcal{F}_{6}^{-1}\left\{\vec{\mathbf{c}}\right\} = \underline{\qquad} - \underline{\qquad} = \underline{\qquad}$$

$$\mathcal{F}_{7}^{-1}\left\{\vec{\mathbf{c}}\right\} = \underline{\qquad} - \underline{\qquad} = \underline{\qquad}$$

Problem 3. (1 point) METUNCC/Applied_Math/fourier/Fast_Coeff.pg Suppose that **f** is a vector of length 12 with $\mathcal{F}_1\{\mathbf{f_{even}}\} = 2 - 2i$ and $\mathcal{F}_1\{\mathbf{f_{odd}}\} = -3 - i$.

Compute the following.

- $\mathcal{F}_1\{\mathbf{f}\} =$ _____
- $\mathcal{F}_5{\mathbf{f}} =$ _____
- $\mathcal{F}_7{\mathbf{f}} =$ _____
- $\mathcal{F}_{11}\{\mathbf{f}\} =$ _____

(Your answer cannot use complex multiplication, powers, or trig functions.)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America