Benjamin Walter
math210
Assignment Fast_Fourier due 02/02/2022 at 02:13pm EET
Problem 1. (1 point) METUNCC/Applied_Math/fourier/Fast_Fourier.pg
In this problem you will apply the fast Fourier transform to

$$
\overrightarrow{\mathbf{f}}=(3,3,-2,3,1,-1,-2,1)
$$

(You must write your answers without complex multiplication, trig functions, or powers.)
(A) Split $\overrightarrow{\mathbf{f}}$ into its even and odd components:
$\overrightarrow{\mathbf{f}}_{\text {even }}=(-, \longrightarrow,-$,
$\overrightarrow{\mathbf{f}}_{\text {odd }}=(-, \ldots, \longrightarrow,-)$
(B) Compute the Fourier transforms of the even and odd components:
$\mathcal{F}\left\{\overrightarrow{\mathbf{f}}_{\text {even }}\right\}=(\square, \longrightarrow, \square)$
$\mathcal{F}\left\{\overrightarrow{\mathbf{f}}_{\text {odd }}\right\}=(\square, \square,-\square)$
(C) Combine the Fourier transforms of the even and odd components to get the transform of $\overrightarrow{\mathbf{f}}$
$\mathcal{F}_{0}\{\overrightarrow{\mathbf{f}}\}=\frac{1}{2}(\square+\quad-\quad)=$
$\mathcal{F}_{1}\{\overrightarrow{\mathbf{f}}\}=\frac{1}{2}(\square+\bar{\omega}-\square)=$
$\mathcal{F}_{2}\{\overrightarrow{\mathbf{f}}\}=\frac{1}{2}\left(\square+\bar{\omega}^{2}-\square\right)=$
$\mathcal{F}_{3}\{\overrightarrow{\mathbf{f}}\}=\frac{1}{2}\left(\square+\bar{\omega}^{3}-\square\right)=$
$\mathcal{F}_{4}\{\overrightarrow{\mathbf{f}}\}=\frac{1}{2}(-\quad-\quad-\quad=$
$\mathcal{F}_{5}\{\overrightarrow{\mathbf{f}}\}=\frac{1}{2}(-\quad-\bar{\omega}-\square$
$\mathcal{F}_{6}\{\overrightarrow{\mathbf{f}}\}=\frac{1}{2}\left(--\bar{\omega}^{2}-\quad\right)=$ \qquad
$\mathcal{F}_{7}\{\overrightarrow{\mathbf{f}}\}=\frac{1}{2}\left(--\bar{\omega}^{3}-\quad\right)=$ \qquad

Problem 2. (1 point) METUNCC/Applied_Math/fourier/Fast_Fourier_inv.pg
In this problem you will apply the inverse fast Fourier transform to

$$
\overrightarrow{\mathbf{c}}=(2,-1-2 i, 1,-3-2 i, 0,-3+2 i, 1,-1+2 i)
$$

(A) Split $\overrightarrow{\mathbf{c}}$ into its even and odd components:
$\overrightarrow{\mathbf{c}}_{\text {even }}=(\square, \amalg, \ldots, \square)$
$\overrightarrow{\mathbf{c}}_{\mathrm{odd}}=(\square, \square, \square, \square)$
(B) Compute the inverse Fourier transforms of the even and odd components:
$\mathcal{F}^{-1}\left\{\overrightarrow{\mathbf{c}}_{\text {even }}\right\}=(\square, \longrightarrow, \square)$
$\mathcal{F}^{-1}\left\{\overrightarrow{\mathbf{c}}_{\text {odd }}\right\}=(\square, \square)$
(C) Combine the inverse Fourier transforms of the even and odd components to get the transform of $\overrightarrow{\mathbf{c}}$
$\mathcal{F}_{0}^{-1}\{\overrightarrow{\mathbf{c}}\}=\square+\quad=$
$\mathcal{F}_{1}^{-1}\{\overrightarrow{\mathbf{c}}\}=\ldots+\omega$
$\mathcal{F}_{2}^{-1}\{\overrightarrow{\mathbf{c}}\}=\ldots+\omega^{2} \ldots=$
$\mathcal{F}_{3}^{-1}\{\overrightarrow{\mathbf{c}}\}=$ \qquad $+\omega^{3}=$ \qquad
$\mathcal{F}_{4}^{-1}\{\overrightarrow{\mathbf{c}}\}=$ \qquad $-\quad-\quad=$ \qquad
$\mathcal{F}_{5}^{-1}\{\overrightarrow{\mathbf{c}}\}=$ \qquad $-\omega$ \qquad
\qquad
$\mathcal{F}_{6}^{-1}\{\overrightarrow{\mathbf{c}}\}=$ \qquad $-\omega^{2}$ \qquad
\qquad
$\mathcal{F}_{7}^{-1}\{\overrightarrow{\mathbf{c}}\}=$ \qquad $-\omega^{3}$ \qquad
\qquad

Problem 3. (1 point) METUNCC/Applied_Math/fourier/Fast_Coeff.pg
Suppose that \mathbf{f} is a vector of length 12 with $\mathcal{F}_{1}\left\{\mathbf{f}_{\text {even }}\right\}=2-2 i$ and $\mathcal{F}_{1}\left\{\mathbf{f}_{\text {odd }}\right\}=-3-i$.
Compute the following.

- $\mathcal{F}_{1}\{\mathbf{f}\}=$ \qquad
- $\mathcal{F}_{5}\{\mathbf{f}\}=$ \qquad
- $\mathcal{F}_{7}\{\mathbf{f}\}=$ \qquad
- $\mathcal{F}_{11}\{\mathbf{f}\}=$ \qquad
(Your answer cannot use complex multiplication, powers, or trig functions.)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

